
J Glob Optim (2008) 42:121–138
DOI 10.1007/s10898-007-9270-x

An inexact proximal point method for solving generalized
fractional programs

Jean-Jacques Strodiot · Jean-Pierre Crouzeix ·
Jacques A. Ferland · Van Hien Nguyen

Received: 24 October 2007 / Accepted: 10 December 2007 / Published online: 15 January 2008
© Springer Science+Business Media, LLC. 2008

Abstract In this paper, we present several new implementable methods for solving a
generalized fractional program with convex data. They are Dinkelbach-type methods where
a prox-regularization term is added to avoid the numerical difficulties arising when the solu-
tion of the problem is not unique. In these methods, at each iteration a regularized parametric
problem is solved inexactly to obtain an approximation of the optimal value of the problem.
Since the parametric problem is nonsmooth and convex, we propose to solve it by using a
classical bundle method where the parameter is updated after each ‘serious step’. We mainly
study two kinds of such steps, and we prove the convergence and the rate of convergence
of each of the corresponding methods. Finally, we present some numerical experience to
illustrate the behavior of the proposed algorithms, and we discuss the practical efficiency of
each one.
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1 Introduction

Consider the generalized fractional programming problem

(P) λ∗ = inf
x∈X

{
λ(x) = max

1≤i≤p

{
fi (x)

gi (x)

}}
,

where X ⊆ IRn is nonempty, fi , gi : X → IR are continuous for all 1 ≤ i ≤ p and gi (x) > 0
for all x ∈ X and 1 ≤ i ≤ p. We do not assume that λ∗ is finite nor that (P) has optimal
solutions. Crouzeix et al. [4,5] proposed two Dinkelbach-type algorithms based on the idea
of solving a sequence of auxiliary parametric problems having a simpler structure. So they
obtained two sequences. The first one is converging to λ∗ and the second one to a solution
of (P) if (P) has at least some solution. More precisely they first consider the parametric
problem

(Pλ) F(λ) = inf
x∈X

F(x, λ),

where λ is a real parameter and

F(x, λ) = max
1≤i≤p

{ fi (x)− λgi (x)}. (1)

In particular, they prove that if (P) has a solution, then F(λ∗) = 0, and that if F(λ∗) = 0,
then (P) and (Pλ∗ ) have the same set (possibly empty) of solutions. The corresponding algo-
rithm is as follows: given xk ∈ X , first find λk such that F(xk, λk) = 0, and then find xk+1

a solution of problem (Pλk ). It is easy to see that

F(xk, λk) = 0 ⇔ λk = max
1≤i≤p

fi (xk)

gi (xk)
.

In [4], it is proven that if (P) has a solution, if each subproblem (Pλk ) has a solution, and
if gi (x) ≤ γ for all x ∈ X and 1 ≤ i ≤ p, then the sequence {λk} converges linearly to
λ∗. Moreover, if X is compact, every limit point of {xk} is a solution of (P). To obtain the
superlinear convergence of the sequence {λk}, the algorithm has been modified in [5] by
introducing a normalization vector parameter. The function F(x, λ) defined in (1) has been
replaced by the function

F(x, w, λ) = max
1≤i≤p

{
fi (x)− λgi (x)

wi

}
, (2)

where w ∈ IR p, wi > 0 for all i . The algorithm becomes: given xk ∈ X and wk
i > 0,

i = 1, . . . , p, find λk such that F(xk, wk, λk) = 0. Then compute xk+1 as a solution of
problem (Pwk ,λk

) where

(Pwk ,λk
) Fwk (λk) = inf

x∈X
F(x, wk, λk).

In [5] the authors use the specific normalization wk
i = gi (xk), i = 1, . . . , p at iteration k

to prove that the sequence {λk} converges superlinearly to λ∗ when X is compact and the
sequence {xk} is converging to a solution of (P).

If the solution of (P) is not unique (see an example in [8]), it can happen that the solution
of problem (Pwk ,λk

) is also not unique causing difficulties in the numerical solution of this
problem. The case when X is not compact is also a source of numerical difficulties. On
the other hand, the performances of these methods heavily depend on the effective solution
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of the auxiliary problems (Pwk ,λk
). In general the functions F(·, w, λ) are nonsmooth and

nonlinear.
To overcome the fact that the solution may not be unique, Gugat [8] and Roubi [17]

proposed to add a prox-regularization term to the objective function of each subproblem
(Pwk ,λk

). So the problem (Pwk ,λk
) is replaced by

(Pwk ,λk ,αk
) inf

x∈X

{
F(x, wk, λk)+ (1/2αk)‖x − xk‖2

}
,

where αk > 0. This way of doing is used in the well-known proximal point algorithm
introduced by Martinet [13] and developed by Rockafellar [15] for solving nonsmooth convex
minimization problems. This method is valid when X is a nonempty closed convex subset
of IRn and when each function fi − λgi is convex for all λ ≥ λ∗. In that case, problem
(Pwk ,λk ,αk

) is a convex problem while problem (P) is only a pseudo-convex problem.
Concerning the nonsmoothness of problems (Pwk ,λk

), it has been recently proposed in [1]
to work with a smooth approximation of the max-function in (Pwk ,λk

). This approximation
is from above up to some ε > 0.

In this paper, we use the prox-regularization principle to solve the problem (Pwk ,λk
) and we

approximate from below the convex nonsmooth objective function of this problem in order
to make it easier to solve. Our lower approximation is a piecewise linear convex function
built piece by piece until a criterion measuring the quality of the approximation is satisfied.
This criterion is related to the serious steps used in the bundle methods. The approximation
is suitable if it allows to obtain a sufficient decrease in the value of F . With this criterion, the
method can be viewed as a classical bundle method where after each serious step the value of
the parameter λ is updated. We refer the reader to [3] for more details on the bundle method
in convex programming and to [10,14,18] for the bundle method in the framework of varia-
tional inequalities. However, to prove the superlinear convergence of the sequence {λk}, we
have to consider a more restrictive criterion. The solution of every approximate problem must
be an ηk-solution of problem (Pwk ,λk

) with ηk related to ‖xk+1− xk‖2. Roubi also considers
ηk-solutions but with unspecified ηk > 0. Unfortunately we cannot use Roubi’s convergence
theory [17] because his theory is based on the assumption that the series

∑√
ηkαk is con-

vergent, what we were not able to prove in our situation. However thanks to the special form
of ηk , we can modify some results of Roubi as well as some classical arguments in bundle
methods to obtain the rate of convergence of the sequence {λk} generated by our algorithm.

The paper is organized as follows: in Sect. 2 we introduce the inexact proximal point
method tailored for solving generalized fractional programming problems and we study the
convergence and the rate of convergence of the sequences {xk} and {λk}. Section 3 is devoted
to the construction of the piecewise linear convex approximations of the function F(·, wk, λk)

and Sect. 4 to the report of some numerical results. Finally in a last section ‘Conclusions and
Perspectives’ we give some arguments for dealing with the nonconvex case, i.e., the case
where the functions fi − λgi , i = 1, . . . , p are not necessarily convex.

2 An inexact proximal point method

From now on, we assume that X is a nonempty closed convex subset of IRn and that each
function fi − λgi is convex for all λ ∈ [λ∗, λ(x0)] where x0 ∈ X is known (x0 will be
used as the starting point in our algorithms). This can be ensured in particular in each of the
three following cases: (i) the functions fi are convex and the functions gi are affine, (ii) the
functions fi are convex, the functions gi are concave and λ∗ is known to be positive, (iii)

123



124 J Glob Optim (2008) 42:121–138

the functions fi are convex, the functions gi are convex and λ0 = λ(x0) is negative. In all
these cases the function F(·, wk, λ) is convex over X for all λ ∈ [λ∗, λ0]. This assumption
is justified because in our algorithms, the sequence {λk} will be nonincreasing and bounded
below by λ∗.

Given (xk, wk, λk), the prox-regularization method consists in replacing the problem
minx∈X F(x, wk, λk) by the problem

(Pwk ,λk ,αk
) min

x∈X

{
F(x, wk, λk)+ 1

2αk
‖x − xk‖2

}
,

where αk > 0.
In order to obtain an implementable algorithm, we only compute an approximate solution

of this problem. Practically this will be done by approximating in problem (Pwk ,λk ,αk
) the

nonsmooth convex function F(·, wk, λk) by a convex function ϕ(·, wk, λk) in such a way
that the problem

(APwk ,λk ,αk
) min

x∈X

{
ϕ(x, wk, λk)+ 1

2αk
‖x − xk‖2

}

is easier to solve exactly. The form of this function and how to construct it will be the subject
of the next section. Here we only define the properties that the approximation ϕ(·, wk, λk)

of F(·, wk, λk) must satisfy so that the sequence {λk} converges to λ∗, the optimal value of
(P), and the sequence {xk} converges to some solution of (P) if such a solution exists. The
following approximation is classical in bundle methods.

Definition 2.1 Let c ∈ (0, 1) and let wk > 0, λk ≥ λ∗ and xk ∈ X . A convex function
ϕ(·, wk, λk) is a c-approximation of F(·, wk, λk) at xk if ϕ(x, wk, λk) ≤ F(x, wk, λk) for
all x ∈ X , and if

ϕ(xk+1, wk, λk) ≥ 1

c
F(xk+1, wk, λk), (3)

where xk+1 is the solution of problem (APwk ,λk ,αk
).

Observe that if ϕ(·, wk, λk) is a c-approximation of F(·, wk, λk) at xk , then at xk+1, we can
write

1

c
F(xk+1, wk, λk) ≤ ϕ(xk+1, wk, λk) ≤ F(xk+1, wk, λk). (4)

In particular, since c ∈ (0, 1), we have

ϕ(xk+1, wk, λk) ≤ F(xk+1, wk, λk) ≤ 0. (5)

We can now summarize our general algorithm as follows:

Algorithm 2.1

0. Choose x0 ∈ X , w0 > 0, α0 > 0, c ∈ (0, 1) and set λ0 = λ(x0).
1. At step k, we have xk, wk, αk and λk . Then, construct a c-approximation

of F(·, wk, λk) and find xk+1 ∈ X the unique solution of problem
(APwk ,λk ,αk

). Set λk+1 = λ(xk+1), choose wk+1 > 0, αk+1 > 0,
set k ← k + 1, and go back to 1.
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First observe that wk does not intervene in the computation of λk and that for any w > 0,

λk+1 = λ(xk+1)⇔ F(xk+1, w, λk+1) = 0.

Consequently at each iteration, we have that F(xk, wk, λk) = 0, and that a c-approximation
of F(·, wk, λk) at xk satisfies the property:

F(xk, wk, λk)− F(xk+1, wk, λk) ≥ c [ F(xk, wk, λk)− ϕ(xk+1, wk, λk) ]. (6)

Observe that condition (6) can be interpreted as the real decrease on F when passing from
xk to xk+1 (the left–hand side) is greater than a fraction of the decrease predicted by the
model ϕ (the right–hand side). This kind of step, called a serious step, is used in the bundle
methods for minimizing a nonsmooth convex function as well as in the trust region methods
in nonlinear programming.

In order to study the convergence of the sequence {λk}, we introduce the following nota-
tions. For x ∈ X , w > 0, and λ, we define the sets

I (x) =
{

i | fi (x)

gi (x)
= λ(x)

}
, J (x, λ) = { j | f j (x)− λg j (x) = F(x, λ)},

J (x, w, λ) =
{

j | f j (x)− λg j (x)

w j
= F(x, w, λ)

}
. (7)

Proposition 2.1 Assume c ∈ (0, 1). Then the following results hold:

1. the sequence {λk} is nonincreasing and converges to some λ̂ ≥ λ∗;
2. if λ∗ > −∞ and if gi (xk) ≤ γ and wk

i ≥ w > 0 for all k and 1 ≤ i ≤ p, then
F(xk+1, wk, λk)→ 0.

Proof

1. By definition of F , we have for all 1 ≤ i ≤ p that

F(xk+1, wk, λk) ≥ (1/wk
i ) [ fi (x

k+1)− λk gi (x
k+1)]. (8)

Since fi∗(xk+1) = λk+1gi∗(xk+1) for i∗ ∈ I (xk+1), we obtain, using (8) and (5), that

gi∗(xk+1)

wk
i∗

[λk+1 − λk] ≤ F(xk+1, wk, λk) ≤ 0. (9)

Since gi∗(xk+1) > 0 and wk
i∗ > 0, it follows that λk+1 ≤ λk . So λk → λ̂ ≥ λ∗ because

λk ≥ λ∗ for all k.
2. If λ∗ > −∞, then λ̂ > −∞ and λk+1−λk → 0. Since, by assumption, there exist γ > 0

and w > 0 such that for all 1 ≤ i ≤ p and all k, gi (xk) ≤ γ and wk
i ≥ w, and since

λk+1 − λk ≤ 0, it follows from (9) that

γ

w
(λk+1 − λk) ≤ F(xk+1, wk, λk) ≤ 0. (10)

Consequently, F(xk+1, wk, λk)→ 0 when k →∞. �
In order to prove that λ̂ = λ∗, i.e., that λk → λ∗, we need the following lemma.

Lemma 2.1 Let {(xk, wk, λk)} be the sequence generated by Algorithm 2.1. Then the
following properties hold:

(i) for all k, one has εk ≡ −ϕ(xk+1, wk, λk)− α−1
k ‖xk+1 − xk‖2 ≥ 0;
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(ii) for all x ∈ X,

‖xk+1 − x‖2 ≤ ‖xk − x‖2 + ‖xk+1 − xk‖2 + 2αk [F(x, wk, λk)+ εk];
(iii) if, in addition, λ∗ > −∞, gi (xk) ≤ γ and wk

i ≥ w > 0 for all k and 1 ≤ i ≤ p, then
the series

∑
k≥1 [εk + (2αk)

−1‖xk+1 − xk‖2] is convergent.

Proof

(i) By definition of xk+1, we have that α−1
k (xk − xk+1) ∈ ∂[ϕ(·, wk, λk) + ψX ] (xk+1)

where ψX is the indicator function associated with X (ψX = 0 over X and +∞
otherwise). Hence for all x ∈ X , we obtain

ϕ(x, wk, λk) ≥ ϕ(xk+1, wk, λk)+ α−1
k 〈xk − xk+1, x − xk+1〉. (11)

Taking x = xk and using Definition 2.1, we deduce that

0 ≥ ϕ(xk+1, wk, λk)+ α−1
k ‖xk+1 − xk‖2,

i.e., εk ≥ 0.
(ii) Let x ∈ X . Since ϕ(x, wk, λk) ≤ F(x, wk, λk), it follows from (11) and from the

definition of εk that

F(x, wk, λk) ≥ ϕ(xk+1, wk, λk)+ α−1
k 〈xk − xk+1, x − xk + xk − xk+1〉

= ϕ(xk+1, wk, λk)+ α−1
k ‖xk+1 − xk‖2 + α−1

k 〈xk − xk+1, x − xk〉
= −εk + α−1

k 〈xk − xk+1, x − xk〉.
Using this inequality in the last term of the following equality:

‖xk+1 − x‖2 = ‖xk+1 − xk‖2 + ‖xk − x‖2 + 2〈xk+1 − xk, xk − x〉,
we obtain that

‖xk+1 − x‖2 ≤ ‖xk+1 − xk‖2 + ‖xk − x‖2 + 2αk [F(x, wk, λk)+ εk].
(iii) By definition of εk and by (3), we have that

εk + α−1
k ‖xk+1 − xk‖2 = −ϕ(xk+1, wk, λk) ≤ −1

c
F(xk+1, wk, λk).

From (10) with k replaced by k − 1, we can write 0 ≤ F(xk, wk−1, λk−1) + (γ /w)
[λk−1 − λk]. Combining the last two inequalities, we obtain

εk + α−1
k ‖xk+1 − xk‖2 ≤ 1

c
[F(xk, wk−1, λk−1)− F(xk+1, wk, λk)]

+ γ

wc
[λk−1 − λk].

Summing the previous inequalities from k = 1 to k = q yields
q∑

k=1

{
εk + α−1

k ‖xk+1 − xk‖2
}
≤ 1

c
[F(x1, w0, λ0)− F(xq+1, wq , λq)]

+ γ

wc
[λ0 − λq ].

Since, by Proposition 2.1, F(xq+1, wq , λq)→ 0 and λq → λ̂, we have that the series∑
k≥1 [εk + α−1

k ‖xk+1 − xk‖2] is convergent. Hence the result. �
From this lemma, we can derive the convergence of the sequence {λk} toward λ∗.
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Theorem 2.1 Let c ∈ (0, 1). Assume 0 < ν ≤ gi (xk) ≤ γ and 0 < w ≤ wk
i ≤ w for all

k and 1 ≤ i ≤ p. Assume also that
∑

k≥0 αk = +∞ and that either αk ≤ α for all k or
αk ≤ αk+1 for all k . Then the sequence {λk} generated by Algorithm 2.1 converges to λ∗,
the optimal value of problem (P).

Proof Since, by Proposition 2.1, the sequence {λk} converges to λ̂ ≥ λ∗, it remains to
prove that λ̂ = λ∗. If λ̂ = −∞, then λ̂ = λ∗. So we can suppose that λ̂ > −∞. Now let
x ∈ X . Then, for j ∈ J (x, wk, λk), we have F(x, wk, λk) = ( f j (x) − λk g j (x))/wk

j and
since λ(x) ≥ f j (x)/g j (x), we obtain

F(x, wk, λk) ≤ (λ(x)− λk)g j (x)/w
k
j .

Then, by assumption,

F(x, wk, λk) ≤ (λ(x)− λk)ν/w if λ(x)− λk ≤ 0. (12)

Now we prove that for all x ∈ X , we have

lim sup
k→∞

(
F(x, wk, λk)

)
≥ 0. (13)

Suppose, to get a contradiction, that (13) is not true. Then there exist ε > 0, x̃ ∈ X and kε
such that

F(x̃, wk, λk) < −ε for all k ≥ kε.

Then, for all k ≥ kε, it follows from the second part of Lemma 2.1 with x = x̃ that

‖xk+1 − x̃‖2 ≤ ‖xk − x̃‖2 + 2αk [εk + (2αk)
−1 ‖xk+1 − xk‖2] − 2αkε. (14)

First assume that αk ≤ α. Since 2αkε > 0, we deduce from the previous inequality that

‖xk+1 − x̃‖2 ≤ ‖xk − x̃‖2 + 2α [εk + (2αk)
−1 ‖xk+1 − xk‖2].

But, by Lemma 2.1, the series
∑

k≥1 [εk+ (2αk)
−1 ‖xk+1− xk‖2] is convergent and thus the

sequence {‖xk − x̃‖2} converges to some u ≥ 0. Summing the inequality (14) from k = kε
to k = q , and using αk ≤ α, we have

‖xq+1 − x̃‖2 − ‖xkε − x̃‖2 ≤ 2α
q∑

k=kε

[εk + (2αk)
−1‖xk+1 − xk‖2] − 2ε

q∑
k=kε

αk .

Taking the limit as q → ∞ and using the assumption
∑

k≥0 αk = +∞, we obtain that
u − ‖xkε − x̃‖2 is less than −∞, which is impossible. So (13) holds.
Assume now that αk ≤ αk+1 for all k. Then (14) implies that

(2αk+1)
−1‖xk+1 − x̃‖2 ≤ (2αk)

−1‖xk − x̃‖2 + [εk + (2αk)
−1 ‖xk+1 − xk‖2] − ε. (15)

Since ε > 0 and the series
∑

k≥1 [εk + (2αk)
−1‖xk+1 − xk‖2] is convergent, it follows that

the sequence {(2αk)
−1 ‖xk − x̃‖2} converges to some u ≥ 0. Summing the inequality (15)

from k = kε to k = q , we have

(2αq+1)
−1 ‖xq+1 − x̃‖2 − (2αkε )

−1‖xkε − x̃‖2

≤
q∑

k=kε

[εk + (2αk)
−1‖xk+1 − xk‖2] − ε(q − kε).
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Taking the limit as q → ∞, we obtain that u − (2αkε )
−1‖xkε − x̃‖2 ≤ −∞, which is

impossible. So (13) holds.
Let x ∈ X . First if λ(x) ≥ λk for an infinite set of indices k, then λ(x) ≥ λ̂. Otherwise,

λ(x) < λk is true for all k greater than some k0. But then from (12), we have F(x, wk, λk) ≤
(λ(x) − λk)ν/w for all k ≥ k0. Taking the superior limit of both members and using (13),
we deduce that λ(x) ≥ λ̂. So in both cases, we obtain that λ(x) ≥ λ̂. Since x is arbitrary, we
have that λ∗ ≥ λ̂ and thus that λ∗ = λ̂. �

Observe that it is not supposed that problem (P) has a solution to get the convergence of
the sequence {λk}. Moreover, the assumption

∑
k≥0 αk = +∞ is usual in the convergence

theorems concerning the proximal point algorithms (see, for example, [15]). Here we impose,
in addition, that either the sequence {αk} is bounded above or nondecreasing. In particular,
we can choose for {αk} a constant sequence or a nondecreasing sequence converging to+∞.
In the next theorem, we prove the convergence of the sequence {xk}, but this time under
the assumption that (P) has a solution. However to prove this result, we need the following
lemma (see e.g., [3]).

Lemma 2.2 Let z̄ be a limit point of a sequence {zk} satisfying

‖zk+1 − z̄‖2 ≤ ‖zk − z̄‖2 + δk

where {δk} is a sequence of nonnegative numbers such that
∑

k≥0 δk < +∞. Then the whole
sequence {zk} converges to z̄.

Theorem 2.2 Assume that the assumptions of Theorem 2.1 are satisfied. Then

(i) any limit point of the sequence {xk} is a solution of (P);
(ii) if αk ≤ α for all k and the solution set of problem (P) is nonempty, then the sequence
{xk} converges to some solution of (P).

Proof

(i) Let x∗ be a limit point of the sequence {xk}. Then xnk → x∗ and since λ(x) is a con-
tinuous function, λ(xnk ) → λ(x∗). But λ(xnk ) = λnk → λ∗ (by Theorem 2.1). So
λ(x∗) = λ∗ and x∗ is a solution of problem (P).

(ii) First we prove that the sequence {xk} is bounded. In that purpose, let x̄ be a solution
of problem (P). Then F(x̄, wk, λk)≤ 0. Indeed, since λk ≥ λ∗ = λ(x̄) = maxi fi (x̄)/
gi (x̄), we have that maxi { fi (x̄)−λk gi (x̄)}≤0 and thus that F(x̄, wk, λk)≤0. Now using
the second part of Lemma 2.1 with x = x̄ , we obtain

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2 + ‖xk+1 − xk‖2 + 2αk [F(x̄, wk, λk)+ εk]
≤ ‖xk − x̄‖2 + 2α [ εk + (2αk)

−1 ‖xk+1 − xk‖2 ].
Since the series

∑
k≥1 [εk + (2αk)

−1‖xk+1 − xk‖2] is convergent, it follows that the
sequence {‖xk − x̄‖} is convergent and thus that the sequence {xk} is bounded. Let x∗ be
a limit point of the sequence {xk}. By (i), x∗ is a solution of (P). Using again the second
part of Lemma 2.1, but this time with x = x∗, we obtain

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + 2α [ εk + (2αk)
−1‖xk+1 − xk‖2 ].

Since x∗ is a limit point of {xk} and since
∑

k≥1 [εk + (2αk)
−1‖xk+1− xk‖2] is conver-

gent, it follows from Lemma 2.2, that the whole sequence {xk} converges to x∗. �
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Observe that the assumptions on the sequence {wk}, i.e., w ≥ wk
i ≥ w > 0 for all k and

1 ≤ i ≤ p, are satisfied when wk
i = 1 for all k and 1 ≤ i ≤ p as well as when wk

i = gi (xk)

for all k and 1 ≤ i ≤ p because in the second case, it is a consequence of the condition
γ ≥ gi (x) ≥ ν for all x ∈ X and 1 ≤ i ≤ p imposed on the functions gi .

In order to analyze the rate of convergence of Algorithm 2.1, we consider the following
assumption denoted by (H ):

(H ) there exist δ > 0, κ > 0 such that
F(x, λ∗) ≥ κdist(x, X∗)2 for all x ∈ B(X∗, δ) ∩ X ,

where X∗ is the solution set of (P), B(X∗, δ) = ∪x̄∈X∗ B(x, δ), B(x, δ) = {y ∈ IRn |
‖y − x‖ < δ} and dist(x, X∗) = inf x̄∈X∗ ‖x − x̄‖. This assumption has been introduced
by Roubi [17] to prove the linear rate of convergence of his prox-regularization method. In
particular, it is satisfied when the function F(·, λ∗) is polyhedral (for example when the func-
tions fi are polyhedral and the functions gi are affine) and X is polyhedral. This assumption
is also satisfied when F(·, λ∗) is strongly convex.

Theorem 2.3 Assume that the solution set X∗ of problem (P) is nonempty and that the func-
tion F(·, λ∗) satisfies assumption (H). Assume also that τ = infx∈X∗ mini gi (x) > 0 and
that the sequence {xk} converges to some solution of (P). Then for αk sufficiently large, the
sequence {λk} converges linearly to λ∗.
Proof Let x̃ k ∈ X∗ such that ‖xk − x̃ k‖ = dist(xk, X∗). From the definition of xk+1 and the
inequality ‖xk+1 − xk‖2 ≥ 0, we obtain that

ϕ(x̃ k, wk, λk)+ (2αk)
−1‖x̃ k − xk‖2 ≥ ϕ(xk+1, wk, λk),

and thus, by definition of a c-approximation and from (10), we can deduce that

F(x̃ k, wk, λk)+ (2αk)
−1 ‖x̃ k − xk‖2 ≥ 1

c
F(xk+1, wk, λk) ≥ γ

wc
(λk+1 − λk). (16)

Since the sequence {xk} converges to some x∗ ∈ X∗, we have that xk ∈ B(X∗, δ) ∩ X for k
large enough and thus, by assumption (H )

F(xk, λ∗) ≥ κ ‖xk − x̃ k‖2 for k large enough. (17)

Next F(xk, λ∗) = f j (xk) − λ∗g j (xk) for some j ∈ J (xk, λ∗). Hence, since f j (xk) ≤
λk g j (xk), we have

F(xk, λ∗) ≤ (λk − λ∗)g j (x
k) ≤ γ (λk − λ∗) (18)

because λk ≥ λ∗. Combining (17) and (18), we obtain that for k large enough

κ ‖xk − x̃ k‖2 ≤ γ (λk − λ∗). (19)

Similarly for j ∈ J (x̃ k, wk, λk), we have F(x̃ k, wk, λk) = (1/wk
j )[ f j (x̃ k) − λk g j (x̃ k)].

Since f j (x̃ k) ≤ λ(x̃ k) g j (x̃ k) = λ∗g j (x̃ k), we obtain

F(x̃ k, wk, λk) ≤ (λ∗ − λk)
g j (x̃ k)

wk
j

≤ τ

w
(λ∗ − λk) (20)

because λk ≥ λ∗. So, using successively (20), (19), and (16) yields for k large enough
τ

w
(λ∗ − λk)+ (2αk)

−1 ‖x̃ k − xk‖2 ≥ F(x̃ k, wk, λk)+ (2αk)
−1 ‖x̃ k − xk‖2

τ

w
(λ∗ − λk)+ (2αk)

−1 γ

κ
(λk − λ∗) ≥ γ

wc
(λk+1 − λk).
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Writing λk+1 − λk = λk+1 − λ∗ + λ∗ − λk , we deduce from the previous inequality, after
division by γ /wc, that[

1+ c

(
w

2αkκ
− τw

γw

)]
(λk − λ∗) ≥ (λk+1 − λ∗).

Since τw ≤ γw, the coefficient of (λk −λ∗) in the left-hand side is positive. It is strictly less
than 1 when lim infk→∞ αk > (γw)/(2κτ). Hence the linear convergence of the sequence
{λk} when αk is sufficiently large. �

Theoretically, since c ∈ (0, 1) and since w

2αkκ
− τw

γw
< 0, the best linear rate of conver-

gence is attained when c is near 1. But the more c is close to 1, the more accurate is the
c-approximation (it is exact when c = 1) and the more difficult it is to compute it.

Now to obtain the superlinear convergence of the sequence {λk}, we have to impose that
the regularization parameter αk tends to +∞. We also have to assume a stronger condition
on the c-approximating function ϕ. This is the subject of the next definition.

Definition 2.2 Let c ∈ (0, 1) and let wk > 0, λk ≥ λ∗ and xk ∈ X . A convex function
ϕ(·, wk, λk) is a strong c-approximation of F(·, wk, λk) at xk ifϕ(x, wk, λk) ≤ F(x, wk, λk)

for all x ∈ X and if

F(xk+1, wk, λk)− ϕ(xk+1, wk, λk) ≤ 1− c

αk
‖xk+1 − xk‖2, (21)

where xk+1 is the solution of problem (APwk ,λk ,αk
).

This definition is justified by the next proposition.

Proposition 2.2 Let c ∈ (0, 1). A strong c-approximation of F(·, wk, λk) at xk is also a
c-approximation of F(·, wk, λk) at xk .

Proof By definition of xk+1, we have that α−1
k (xk − xk+1) ∈ ∂[ϕ(·, wk, λk)+ ψX ](xk+1).

So

ϕ(xk, wk, λk)− ϕ(xk+1, wk, λk) ≥ α−1
k ‖xk+1 − xk‖2. (22)

Since, by assumption, ϕ(xk, wk, λk) ≤ F(xk, wk, λk) = 0, we obtain from the previous
inequality and from (21) that

−ϕ(xk+1, wk, λk) ≥ 1

1− c
[F(xk+1, wk, λk)− ϕ(xk+1, wk, λk)],

i.e.,

c

1− c
ϕ(xk+1, wk, λk) ≥ 1

1− c
F(xk+1, wk, λk).

But this inequality is equivalent to (3). �

Theorem 2.4 Assume that the solution set X∗ of problem (P) is nonempty, that the function
F(·, λ∗) satisfies assumption (H), and that τ = infx∈X∗ mini gi (x) > 0. Assume also that
at each iteration, ϕ(·, wk, λk) is a strong c-approximation of F(·, wk, λk) with c > 1/2 and
that the sequence {xk} converges to some solution of (P). Then the sequence {λk} converges
superlinearly to λ∗ if αk tends to +∞ when k → ∞ provided that at each iteration, wk

i is
chosen equal to βgi (xk) with β > 0.
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Proof By definition of F and λk+1, we have for i ∈ I (xk+1, λk+1) that

F(xk+1, wk, λk) ≥ fi (xk+1)− λk gi (xk+1)

wk
i

= (λk+1 − λk)
gi (xk+1)

wk
i

.

Since λk ≥ λ∗ for all k, we can deduce from the previous inequality that

F(xk+1, wk, λk) ≥ (λk+1 − λ∗)min
i

gi (xk+1)

wk
i

− (λk − λ∗)max
i

gi (xk+1)

wk
i

(23)

Let x̃ k ∈ X∗ such that ‖xk − x̃ k‖2 = d(xk, X∗). By definition of xk+1, we have

ϕ(x̃ k, wk, λk)+ (2αk)
−1 ‖x̃ k − xk‖2 ≥ ϕ(xk+1, wk, λk)+ (2αk)

−1 ‖xk+1 − xk‖2.
Since, by assumption,ϕ(x̃ k, wk, λk) ≤ F(x̃ k, wk, λk), we obtain from the previous inequality
and from (21) that

F(x̃ k, wk, λk)+ (2αk)
−1 ‖x̃ k − xk‖2 ≥ F(xk+1, wk, λk)+ 2c − 1

2αk
‖xk+1 − xk‖2,

and thus, since c > 1/2, that

F(x̃ k, wk, λk)+ (2αk)
−1 ‖x̃ k − xk‖2 ≥ F(xk+1, wk, λk). (24)

Combining (24) and (23) yields

F(x̃ k, wk, λk)+ (2αk)
−1 ‖x̃ k − xk‖2

≥ (λk+1 − λ∗)min
i

gi (xk+1)

wk
i

− (λk − λ∗)max
i

gi (xk+1)

wk
i

.

Then, using this inequality and the inequalities (19) and (20), we obtain[
max

i

gi (xk+1)

wk
i

−min
i

gi (x̃ k)

wk
i

+ γ

2αkκ

]
(λk − λ∗) ≥ (λk+1 − λ∗)min

i

gi (xk+1)

wk
i

.

Thanks to (19), the sequences {xk} and {x̃ k} converge to the same limit. Combining this with
the choice of w: wk

i = βgi (xk) for all k and 1 ≤ i ≤ p, we have

max
i

gi (xk+1)

wk
i

→ 1/β, min
i

gi (x̃ k)

wk
i

→ 1/β and min
i

gi (xk+1)

wk
i

→ 1/β

as k →∞. Hence (λk+1−λ∗)/(λk−λ∗)→ 0 as k →∞ becauseαk →+∞ as k →∞. �
This theorem must be compared with Theorem 2.2 of [5] where the superlinear conver-

gence of the sequence {λk} is also obtained. In this theorem, there are no regularization terms,
i.e., αk = +∞, and all the components wk

i of w are equal to gi (xk).

3 Building c-approximations

In order to obtain an implementable algorithm, we have now to indicate how to construct a
c-approximation of F(·, wk, λk) at xk such that the subproblem (APwk ,λk ,αk

) is easier to solve
than problem (Pwk ,λk ,αk

). For the sake of simplicity, we denote the function F(·, wk, λk) by
Fk and a (strong) c-approximation of Fk at xk byϕk . When X is described by linear equalities
and/or inequalities and when ϕk is a piecewise linear convex function, it is very easy to see
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that problem (APwk ,λk ,αk
) is equivalent to a convex quadratic programming problem. Indeed,

let ϕk(x) = max1≤q≤m {〈aq , x〉 + bq} where aq ∈ IRn and bq ∈ IR for all 1 ≤ q ≤ m. Then
problem (APwk ,λk ,αk

) is equivalent to the problem
⎧⎨
⎩

min v + (1/2αk)‖x − xk‖2
s.t. v ≥ 〈aq , x〉 + bq , q = 1, . . . ,m

x ∈ X

This problem is a convex quadratic problem and efficient numerical methods exist for solv-
ing it. The construction of ϕk is based on the following classical assumption in nonsmooth
convex programming [3]:

Assumption: At each point y of X , one subgradient of Fk at y is available. This subgradient
is denoted by s(y).

A natural strategy to obtain a piecewise linear convex function for the function ϕk is to
construct it piece by piece by generating successive models

ϕk
j , j = 1, 2, . . .

until (if possible) ϕk
jk

is a (strong) c-approximation of Fk at xk for some jk ≥ 1. For j =
1, 2, . . . , we denote by yk

j the unique solution of the problem

(Pk
j ) min

y∈X
{ϕk

j (y)+ (1/2αk)‖y − xk‖2},

and we set ϕk = ϕk
jk

and xk+1 = yk
jk

.

In order to obtain a (strong) c-approximation ϕk
jk

of Fk at xk , we have to impose some

conditions on the successive models ϕk
j , j = 1, 2, . . . . However, before presenting them, we

need to define the affine functions lk
j , j = 1, 2, . . . by

lk
j (y) = ϕk

j (y
k
j )+ 〈γ k

j , y − yk
j 〉 ∀y ∈ IRn,

where γ k
j = α−1

k (xk − yk
j ). By optimality of yk

j , we have

γ k
j ∈ ∂[ϕk

j + ψX ](yk
j ) (25)

where ψX is the indicator function associated with X . It is then easy to observe that

lk
j (y

k
j ) = ϕk

j (y
k
j ) and lk

j (y) ≤ ϕk
j (y) for all y ∈ X. (26)

Now, we assume that the following conditions introduced in ([3], p. 269), are satisfied by
the convex approximating functions ϕk

j ,

(C1) ϕk
j ≤ Fk on X for j = 1, 2, . . .

(C2) ϕk
j+1 ≥ Fk(yk

j )+ 〈s(yk
j ), · − yk

j 〉 on X for j = 1, 2, . . .

(C3) ϕk
j+1 ≥ lk

j on X for j = 1, 2, . . .,

where s(yk
j ) denotes the subgradient of Fk available at yk

j .

Several models fulfill these conditions. For example, for the first model ϕk
1 , we can take

the linear function

ϕk
1(y) = Fk(xk)+ 〈s(xk), y − xk〉 ∀y ∈ IRn .
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Since s(xk) ∈ ∂Fk(xk), condition (C1) is satisfied for j = 1. For the next models ϕk
j ,

j = 2, . . . , there exist several possibilities. A first example is to take for j = 1, 2, . . .

ϕk
j+1(y) = max {lk

j (y), Fk(yk
j )+ 〈s(yk

j ), y − yk
j 〉} ∀y ∈ IRn . (27)

Conditions (C2), (C3) are obviously satisfied and condition (C1) is also satisfied because
each linear piece of these functions are below Fk .

Another example is to take for j = 1, 2, . . .

ϕk
j+1(y) = max

0≤q≤ j
{Fk(yk

q )+ 〈s(yk
q ), y − yk

q 〉} ∀y ∈ IRn, (28)

where yk
0 = xk . Since s(yk

q ) ∈ ∂Fk(yk
q ) for q = 0, . . . , j and since ϕk

j+1 ≥ ϕk
j ≥ lk

j , it is
easy to see that conditions (C1)–(C3) are satisfied.

Comparing (27) and (28), we can say that lk
j plays the same role as the j linear functions

Fk(yk
q )+ 〈s(yk

q ), y − yk
q 〉, q = 0, . . . , j − 1. It is the reason why this function lk

j is called
the aggregate affine function (see, e.g., [3]).

Now the algorithm to construct a strong c-approximation of Fk at xk as well as the next
iterate xk+1 can be expressed as follows:

Algorithm 3.1 Let xk ∈ X and c ∈ (1/2, 1). Set j = 1.

Step 1. Step 1. Choose ϕk
j a convex piecewise linear function that satisfies (C1)–(C3) and

solve problem (Pk
j ) to get yk

j .

Step 2. Step 2. If Fk(yk
j )− ϕk

j (y
k
j ) ≤ (1− c)α−1

k ‖yk
j − xk‖2, then set xk+1 = yk

j , jk = j

and STOP; the function ϕk
jk

is a strong c-approximation of Fk at xk and xk+1 is the
next iterate.

Step 3. Step 3. Increase j by 1 and go to Step 1.

A c-approximation can also be obtained by replacing in Step 2 the inequality by ϕk
j (y

k
j ) ≥

c−1 Fk(yk
j ). As a strong c-approximation is also a c-approximation, it is immediate that if

a strong c-approximation is obtained after finitely many iterations, then the same holds for
the c-approximation. So we only consider strong c-approximation in the next theorem. Fur-
thermore, the fact that ϕk

j satisfies (C1)–(C3) means that ϕk
j satisfies (C1) and, if j ≥ 2, ϕk

j
satisfies (C2) and (C3) with j + 1 replaced by j .

Our aim is now to prove that if xk is not a minimum of Fk and if the models ϕk
j , j = 1, . . .

satisfy (C1)–(C3), then there exists jk ∈ IN0 such that ϕk
jk

is a strong c-approximation of Fk

at xk , i.e., that the procedure stops in Step 2 after finitely many iterations.

Theorem 3.1 Suppose that the models ϕk
j , j = 1, 2, . . . satisfy conditions (C1)–(C3), and

let, for each j , yk
j be the unique solution of problem (Pk

j ). Let also x̄k be the unique solution
of problem (Pwk ,λk ,αk

). Then

(1) Fk(yk
j )− ϕk

j (y
k
j )→ 0 and yk

j → x̄ k when j →+∞.

(2) If xk �= x̄ k , then the Algorithm 3.1 stops after finitely many iterations jk with ϕk
jk

a strong

c-approximation of Fk at xk and with xk+1 = yk
jk

.

(3) If xk = x̄ k , then λk = λ∗ and xk is a solution to problem (P).

Proof The proof of the first part is classical and can be found in ([3], Proposition 4.3). The
second part is straightforward because the left-hand side of the inequality in Step 2. tends
to zero while the right-hand side converges to the positive number (1 − c)α−1

k ‖x̄ k − xk‖2.
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Finally if xk = x̄ k , then F(xk, λk) = 0 and the conclusion follows from Theorem 2.1
in [5]. �

Inserting Algorithm 3.1 in Step 1 of Algorithm 2.1, we obtain the following algorithm.

Bundle Algorithm
Choose x0 ∈ X , w0 > 0, α0 > 0, c ∈ (1/2, 1) and set λ0 = λ(x0), y0

0 = x0 and
k = 0, j = 1.

Step 1. Choose a piecewise linear convex function ϕk
j satisfying (C1)–(C3) and solve

(Pk
j ) min

y∈X

{
ϕk

j (y)+
1

2αk
‖y − xk‖2

}
,

to obtain the unique optimal solution yk
j .

Step 2. If Fk(yk
j ) − ϕk

j (y
k
j ) ≤ (1 − c)α−1

k ‖yk
j − xk‖2, then set xk+1 = yk

j , yk+1
0 = xk+1,

λk+1 = λ(xk+1), choose wk+1 > 0, αk+1 > 0, increase k by 1 and set j = 0.
Step 3. Increase j by 1 and go to Step 1.

Another bundle algorithm is obtained by replacing in Step 2 the first inequality corre-
sponding to a strong c-approximation by the inequality ϕk

j (y
k
j ) ≥ c−1 Fk(yk

j ) corresponding
to a c-approximation. To distinguish the two algorithms in the next section, we denote by B1
and B2 the bundle algorithms using the c-approximations and the strong c-approximations,
respectively.

4 Numerical results

The computational experience reported here is performed with the software MATLAB. The
purpose is to compare the numerical behavior of the two new bundle methods B1 and B2
introduced in Sect. 3 with the prox-regularization method (denoted M) introduced in Sect. 1
where each parametric subproblem (Pwk ,λk ,αk

) is solved using a nonsmooth exact minimiza-
tion procedure before updating the value of λk . Numerical results for method M are reported
in [8] by Gugat. For this comparison, we consider a first set of test problems proposed in [7]
(see also [1], p. 21).

Problem 4.1

min
x∈X

max

{
4x3

1 + 11x2

16x1 + 4x2
,

4x2
1 − x1

3x1 + x2

}

where

X = { x ∈ IR2 | x1 + x2 ≥ 1, 2x1 + x2 ≤ 4, x1, x2 ≥ 0 }
and the initial point is x0 = (1, 1)T .

Problem 4.2

min
x∈X

max

{ ∣∣∣∣3x1 − 2x2

4x1 + x2

∣∣∣∣ ,
∣∣∣∣ x1

3x1 + x2

∣∣∣∣
}

where

X = { x ∈ IR2 | x1 + x2 ≥ 1, 2x1 + x2 ≤ 4, x1, x2 ≥ 0 }
and the initial point is x0 = (1, 1)T .
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Table 1 Comparison of methods B1, B2, B3 and M on three test problems

Problem 4.1 (n = 2, p = 2) 4.2 (n = 2, p = 4) 4.3 (n = 4, p = 18)

Method B1 B2 B3 M B1 B2 B3 M B1 B2 B3

iter 4 3 7 3 9 9 9 9 41 37 56
QP 19 21 26 31 18 18 18 34 184 143 223
cpu .22 .26 .32 .33 .27 .26 .33 .45 2.44 2.42 2.93

Sol λ∗ = 0.432494 λ∗ = 0.196152 λ∗ = 0.074179

Problem 4.3

min
x∈X

max
i=0,...,9

∣∣∣∣ 84x1 + 8i3x2 − i4x3 − 83i x4

84x4 + 8i3x3

∣∣∣∣
where

X =
{

x ∈ IR4 | − 1000 ≤ x1, x2 ≤ 1000, 1 ≤ i3x3 + 83x4

83 ≤ 1000, i = 0, . . . , 9

}

and the initial point is x0 = (0.5, 0, 0, 1)T . The results are summarized in Table 1 where iter,
QP, cpu, n, p denote the number of iterations, the total number of quadratic problems solved,
the cpu time in seconds, the number of variables, and the number of ratios, respectively.
At each iteration the number of subgradient evaluations is equal to the number of quadratic
problems solved. The numerical results indicate that the number of subgradient evaluations
is quite constant at each iteration.

In all the tests, the parameters c and αk are chosen as c = 0.9, and αk = 50 for all k,
and the vector wk as wk

i = gi (xk) for all k and 1 ≤ i ≤ p. For all the methods the solution
λ∗ mentioned in [1] is achieved for the three problems and the two ratios in the objective
function are active at the solution for the first two problems while four ratios out of 10 are
active for the third problem. Although the dimension of these test problems is small, one
can observe that methods B1 and B2 give better results than method M both in terms of the
number of quadratic problems solved and of the cpu time. In general, less iterations are nec-
essary in method M, but each iteration is more expensive in terms of the number of quadratic
problems to solve. For problem 4.3, we do not report results for the method M because the
cpu time exceeds the maximum time allowed in the tests. Note also that this problem has the
particularity of having several optimal solutions.

To summarize, it seems more efficient to update the value of λk in problem (Pwk ,λk ,αk
)

after completing a serious step as in methods B1 and B2 before the exact solution of this
problem is obtained. Based on this observation, we consider another strategy in the numer-
ical tests: the value of λk is updated as soon as, in the computation of a c-approximation,
a negative value of Fk is reached. This method is denoted B3 in the following. Although
no convergence proof has been established for this method, we observe that it converges
for all problems solved. It follows that one iteration of method B3 should require solving a
smaller number of quadratic problems at each iteration, but more iterations should be neces-
sary to reach the solution. Note that we implement B3 using the c-approximation of Fk as in
method B1.

To compare numerically the methods B1, B2 and B3, a second set of larger test prob-
lems is randomly generated. As suggested in [1], the ratios in these problems consist of
quadratic functions fi (x) = (1/2)xT Gi x+aT

i x+bi in the numerators, and linear functions
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Table 2 Comparison of the three methods on randomly generated problems

Problem n = 15 p = 20 n = 20 p = 20 n = 50 p = 50

Method B1 B2 B3 B1 B2 B3 B1 B2 B3

iter 6 6 8 7 7 9 7 7 13
QP 45 86 48 54 112 49 114 267 153
cpu 1.45 3.03 1.88 2.31 4.99 2.30 17.02 38.17 22.74

Sol λ∗ = −0.534110 λ∗ = −0.325440 λ∗ = −0.092863

Problem n = 50 p = 100 n = 100 p = 100 n = 100 p = 150

Method B1 B2 B3 B1 B2 B3 B1 B2 B3

iter 8 6 22 7 6 20 7 7 25
QP 124 229 223 124 234 195 146 301 301
cpu 16.7 30.2 32.7 69.6 133.6 115.2 86.1 179.8 190.4

Sol λ∗ = −0.097989 λ∗ = −0.083710 λ∗ = −0.096492

gi (x) = cT
i x + di in the denominators. The parameters of these functions are generated as

follows:

1. The Hessian matrix Gi is given by Gi = Li Di LT
i where Li is a unit lower triangular

matrix with components randomly generated in [−2.5, 2.5] and Di is a positive diagonal
matrix with components randomly generated in [0.1, 1.6]. In order to generate a positive
semidefinite Hessian, the first element of Di is set to zero.

2. The components of the vectors ai and ci are randomly generated in [−15, 45] and [0, 10],
respectively.

3. The real numbers bi and di are also randomly generated in [−30, 0] and [1, 5], respec-
tively.

Moreover, the following feasible set is used for all the test problems:

X =
⎧⎨
⎩ x ∈ IRn |

n∑
j=1

x j ≤ 1, 0 ≤ x j ≤ 1, j = 1, . . . , n

⎫⎬
⎭ ,

and the initial feasible point is x0 = (1/n, . . . , 1/n). Finally, the parameters c = 0.9,
αk = 50, and wk

i = gi (xk) for all k and 1 ≤ i ≤ p are used. The results are summarized in
Table 2. For each problem the three methods give the same optimal value for λ∗.

For these larger problems, we observe the same behavior as previously for B1 and B2.
When the method B3 is compared with the method B1, we note that as expected, more iter-
ations are required. Furthermore, even if the number of quadratic problems solved at each
iteration of B3 is smaller than B1 in general, nevertheless the total number of quadratic
problems solved in B3 (except for problem n = 20, p = 20) is larger inducing that the cpu
time is also larger than B1. Now comparing methods B1 and B2, the results indicate that
the first one is faster than the second one. Although the number of iterations for B2 is less
than or equal to the number of iterations of B1, the cpu time used by B2 is larger since more
quadratic problems have to be solved to reach an inexact solution for a strong c-approxima-
tion of Fk . In conclusion, the numerical results indicate that the method B1 seems to be the
fastest amongst the methods studied in this paper for solving problem (P).
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5 Conclusions and perspectives

We have shown that generalized fractional programs with convex data can be solved more
efficiently by using an inexact proximal point method rather than an exact one. The strat-
egy is to add a regularization term to the parametric function F(·, wk, λk) and to introduce
implementable criterions to decide when stopping the minimization of this regularized func-
tion in order to update the parameter λk . Since the subproblems are nonsmooth convex
problems, we propose to use a classical bundle method where after each ”serious step”, the
parameter is updated. Two sequences are obtained, {λk} and {xk}, converging to the optimal
value and to some solution of (P), respectively. This procedure is particularly interesting when
several solutions exist for problem (P). Finally, some numerical tests on randomly gener-
ated fractional problems indicate that the method using the c-approximations of F(·, wk, λk)

seems to be the most efficient.
We conjecture that the efficiency of the method could be improved by using the informa-

tion at the end of an iteration to obtain a good starting c-approximation at the next iteration.
This should be the subject of a future investigation.

In this paper we have assumed that the functions fi −λgi are convex for all λ ∈ [λ∗, λ0].
But for several practical problems, this assumption is not true and the max-function F(·, w, λ)
is no more convex. So there is a need to consider the nonconvex case. For taking this sit-
uation into account, several approaches have been proposed in the literature. One of them
is to approximate the nonsmooth function by using an entropic regularization method (see,
for example, [1,19]). Another way to deal with this difficulty is to adapt the proximal point
method developed in this paper to the nonconvex case. In that direction, recent researches
on proximal point methods (see, for example, [11]) have shown that for solving nonconvex
optimization problems with this method, it is crucial, in order to get convergence of the iter-
ates to a stationary point, that the proximal subproblems remain convex. In our situation, the
subproblem (Pw,λ,α) may remain convex even if the function F(·, w, λ) is nonconvex. For
example, when F(·, w, λ) is a lower-C2 function ([16], Def. 10.29, p. 447), it is possible to
add to this function a quadratic term of the form (1/2α)‖ · ‖2 such that the resulting function
becomes convex ([16], Theorem 10.33, p. 450). In our setting, if all the functions fi and
gi , i = 1, . . . , p, are differentiable and if for each i the gradient ∇ fi − λ∇gi is Lipschitz
continuous with a constant Li , then the function F(·, w, λ)+ (1/2α)‖ · ‖2 is strongly convex
for α < [maxi {Li/wi }]−1 ([11], Proposition 1). In other words, if α is sufficiently small the
problem (Pw,λ,α) is strongly convex and consequently has a unique solution.

Another crucial issue is the design of an efficient method for computing the solution of
problem (Pw,λ,α) when F(·, w, λ) is nonconvex. Several bundle methods have been proposed
in the literature for solving this problem when the function F(·, w, λ) is locally Lipschitz
(see, for example, [6,12,20]). In these methods, the function F(·, w, λ) is approximated by
a piecewise linear convex function (to obtain again a convex quadratic subproblem) built
step by step by using the Clarke generalized gradient [2] instead of the usual subdifferential.
However, due to the nonconvexity of F(·, w, λ), these approximations are only appropriate
in a neighborhood of the current point xk with the consequence that either a linesearch or
a trust region strategy must be applied for finding the next point xk+1. More recently, by
means of variational analysis [16], Hare et al. [9] presented a new methodology for solving
the subproblems based on the computation of proximal points of piecewise linear models of
the nonconvex function. Convergence of the method is proven for the class of nonconvex
functions that are prox-bounded and lower-C2. From all these comments concerning non-
convex optimization problems, it follows that it is reasonable to think that the proximal point
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method studied in this paper could be adapted to the nonconvex case. It will be the subject
of a future research.
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